Data mining techniques for feature selection in blood cell recognition
نویسندگان
چکیده
The paper presents and compares the data mining techniques for selection of the diagnostic features in the problem of blood cell recognition in leukemia. Different techniques are compared, including the linear SVM ranking, correlation and statistical analysis of centers and variances of clusters corresponding to different classes. We have applied radial kernel SVM as the classifier. The results of recognition of 10 classes of cells are presented and discussed.
منابع مشابه
Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملOptimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines
In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملLimestone chemical components estimation using image processing and pattern recognition techniques
In this study based on image analysis, an ore grade estimation model was developed. The study was performed at a limestone mine in central Iran. The samples were collected from different parts of the mine and crushed in size from 2.58 cm down to 15 cm. The images of the samples were taken in appropriate environment and processed. A total of 76 features were extracted from the identified rock sa...
متن کاملA Review of Feature Selection Algorithms for Data Mining Techniques
Feature selection is a pre-processing step, used to improve the mining performance by reducing data dimensionality. Even though there exists a number of feature selection algorithms, still it is an active research area in data mining, machine learning and pattern recognition communities. Many feature selection algorithms confront severe challenges in terms of effectiveness and efficiency, becau...
متن کامل